
ENSEMBLE
PROGRAMMING

GUIDEBOOK

MAARET PYHÄJÄRVI 

1

ENSEMBLE PROGRAMMING

GUIDEBOOK

This book is available for download at  

	 https://ensembleprogramming.xyz

It is work in progress to be published at a later date.

This version was published at March 14th, 2021.

© 2015 - 2020 Maaret Pyhäjärvi 

2

https://ensembleprogramming.xyz

THANK YOU

To the person reading this book in progress,

Thank you. For considering ensemble programming as

something of interest. For considering my ideas and

experiences as something that could help you on your path.

For reading this book.

I self-publish so that I can make text available to you

before it is all completed and finished. My work of learning

and teaching Ensemble Programming is far from done.

Writing a book incrementally enables me to create a place

to collect bits of that knowledge with the goal of the

guidebook: condensing information you will need to get

started on a good foot with your Ensemble Programming

journey.

I would love to hear from you. What questions you have,

what lessons have been useful? Creating a book takes a lot

of persistence, and for authors like myself, a sense of

community. You can tweet about the book. I use the

hashtag #EnsembleProgrammingGuidebook on Twitter.

Maaret Pyhäjärvi 

maaret@iki.fi 

3

mailto:maaret@iki.fi

CONTENTS

Preface ……………………………………………………………….……. 6

Chapter 1: What is Ensemble Programming ……………..… 8

	 The Basic Dynamics ………………………..……………….. 10

	 What Does It Look Like? …………………………………… 12

 	 Group of People on One Thing ………………………..… 13

	 Immediate Feedback ……………………………………..…. 14

	 Learning or Contributing ………………………………..… 16

	 Benefits of High Communication ………………….…… 18

Chapter 2: Facilitators in Ensemble Programming …… 20

	 Understanding the Facilitator’s Work ……….……….. 21

	 An Overview to The Work ………………………………… 23

	 Problem to Work On ……………………..…….…………… 24

	 Time and People ……………………………………………… 26

	 Physical Space ………………………….……………………… 27

	 Rules and Working Agreement …….…………………… 29

	 Recognizing Problems ………………….………………….. 35

	 Retrospective ………………………….………………………. 37

Chapter 3: Contributing in an Ensemble ………………… 38

	 Contributions for a Driver ………………………………. 38

4

	 Contributions for a Navigator …………….…….………. 39	

	 Contributions Have Dimensions ……………………… 42

Chapter 3: Learning in an Ensemble …………………….…. 44

Chapter 5: From Time-Boxed to Continuous …………..… 45

Chapter 6: Special Ensemble Programming Setups ……. 47

	 Ensembling with an Audience ……………………..…… 48

	 Training in an Ensemble ………………………………..…..54

	 Remote Ensemble Programming ………………….…… 55	

Chapter 7: Recommended People and Materials ……….. 56

Chapter 8: Miscellaneous Themes ……………………………. 59

	 Attribution for Work Done as an Ensemble ………. 59

APPENDIX ………………………………………..………………….. 69 

5

PREFACE

For Tampere Goes Agile 2014 conference, I invited Woody

Zuill to deliver a keynote: Mob Programming. Whole Team

Approach. I remember sitting in the audience, thinking that

what he was describing was interesting but that it would not

work where I worked. Recognizing the feeling leading me

to new insights, I had to try it.

Back at office I started working to convince my team to try

it with me. Them caring about my happiness was what

allowed them to risk wasting a few hours. But it wasn't a

waste, it was an enjoyable lesson of learning together about

our codebase through refactoring.

Later, with years of experiences working in a group like this,

I tuned in to hear a message that was around all along: mob

has unnecessary negative connotations for something as

inclusive as the method community had joined in

discovering. Following a suggestion from Denise Yu, as

learning all the words groups could be referred to, I settled

into me calling this practice Ensemble Programming.

At my work after inception, we continued ensemble

programming as a way of learning, having a session every

two weeks. Ensemble programming became our gateway to

6

pairing and improved collaboration in general. What I

thought was a waste of time, turned out to be a time saver.

What I thought was something I would never enjoy, turned

out to be something that reminded me that I have been a

programmer since age of 13.

After getting started, I have used ensemble programming as

a way of consulting and teaching, having now perspectives

to the difference people say they know and what they can do

being put on the work. Ensemble programming - and

ensemble testing - have become invaluable for me for

growing the next generations of professionals as well as

keeping the current generations continuously learning.

I still face resistance to ensemble programming from senior

developers who get the job done alone. They learned their

way, reading books and articles and writing and delivering

code. They don't find their motivation for ensemble

programming in personal learning, but enabling learning of

others.

Enjoy ensemble programming guidebook. Try ensembling

out and make it your own. This book is for you to get started

but the journey with ensemble programming continues

further. We are all still discovering ways to turn up the

good. 

7

CHAPTER 1

WHAT IS ENSEMBLE

PROGRAMMING?

”All the brilliant people working on the same thing, at the

same time, in the same place, and on the same computer.”

~ Woody Zuill

Ensemble programming is a software development

approach where the whole group of people works together

using a shared computer, with focus on real-time

contribution from everyone to get the best out of them into

the shared work they are doing.

Image: Ensemble Programming at Tech Excellence Meetup in Finland.
Author of the book is second from left sitting down.

8

The work done can be targeted at writing code - all the

activities around programming. The work done can be

targeted at finding information - all the activities around

testing. The work done can be targeted at creating written

instructions - all the activities around documenting. In this

book, we consider programming as a shorthand for all

activities in development needed to build value in software

at hands of customers.

Since the activity with ensemble programming does not

have to be programming, you will find we often use the term

ensembling, or may talk specifically about ensembling for

testing as Ensemble testing.

When the team works together using one computer, this

guides them to work on a single work item at a time. With

increased communication and learning, quality of end

result improves on the spot and many of the problems

around distributing work to different people can be resolved

on the spot or vanish. There’s less back and forth and a

shared drive to deliver consistently, and a group will

improve whatever is slowing them down.

Before we talk more about benefits, let us look into the basic

dynamics of what ensembling looks like.

9

The Basic Dynamics

What separates ensemble programming from any group

activity are the basic dynamics of roles and rules. An

ensemble is a group of more than 3 people, usually 5-8. The

way the group is set up is not that one is working and others

are watching. Instead, the actions on the keyboard flow

through one person and everyone in the ensemble

contributes.

Image: Roles for Mob Programming Starting Setup

10

ROLES

A new ensemble starts off with roles for the Driver/

Navigators pattern.

• Driver is the person at the keyboard. No decisions

allowed. To help follow the roles, we call this role Hands

particularly with new groups (and groups of kids).

• Navigators are the people off the keyboard. They are the

ones doing the work by using their words to express

intent the driver turns into action. To help follow the

roles, we call this role Brains particularly with new

groups (and groups of kids).

• Designated Navigator is one navigator channeling the

group to the driver. This role is often necessary when first

starting to practice mob programming and dissolves

later. To help follow the roles, we call this role Voices

particularly with new groups (and groups of kids).

RULES

Rules reflect basic expected behaviors.

• Rotate on timer. Whoever is on the keyboard moves

away and makes space for the next one. Timer is in scale

of minutes.

11

• Yes, and. Whatever we were doing when we rotated, we  

continue and improve. We don’t erase previous work.

• No decisions on the keyboard. This is not a group

watching one work. Whatever happens at the keyboard is

initiated from navigators.

• Highest level of abstraction. Navigate on highest

level of abstraction driver can consume. Tell your intent

as a navigator. If more is needed, you see it from the lack

of movement at the keyboard.

• Bias to action. Favor doing something and being ready

to throw it away over discussing in length between

options.

• Learning or contributing. Everyone should be either

learning or contributing, perhaps both.

• Kindness, consideration and respect. We’re

working closely together and we are all valuable

contributors. Make space for everyone to learn and

contribute.

What Does It Look Like?

12

The group sits down on chairs facing a big screen with one

computer connected to the screen. They discuss what they

are about to do and start doing the work.

The designated navigator voices what should happen on the

keyboard, and driver follows that guidance transforming the

communicated intent and details into details of code.

Every four minutes an alarm goes off encouraging all of

them to switch places. If four minutes feels fast, they try two

minutes to first learn to work together as a group. If they

are an established ensemble, the timer goes off every fifteen

minutes. When switching, designated navigator becomes

the driver and the driver returns to the ensemble.

It looks like a game of musical chairs, without music, with

focus on getting work done as a group where everyone is

either learning or contributing.

Group of People on One Thing

Many people look at ensemble programming and wonder

on why would we use so many people to do the work one or

a pair could do. Their concern is that this way of working

would be inefficient. However, that is not the experience of

those who practice ensemble programming.

13

You need to think of software work in a different way.

Typing the code is not programming. Programming is

about learning to translate business needs into working

software solution that stands the test of time in production.

Quality of what we produce matters - in the immediate

solution, the supporting structures created to make it

available for users, and the people’s abilities who produce

more software later.

Instead of thinking about how we can get the most out of

our team, we ask how we can get the best out of our team.

We’ve used swarming approaches to particularly tricky

problems before, yet mob programming was discovered as a

whole team way of working consistently by Woody Zuill and

his team at Hunter Industries. They noticed how working

on particularly tough problems benefited from everyone

working together, and started paying attention to how they

could do more of the things that were working for them.

Many teams bring a group of people together on tough

problems. Most teams after coming together to solve a

problem say “Problem solved, let’s go back to normal”.

Ensemble programming asks “We had very high

performance together, how can we do more of that?”.

14

When working on something complex, an ensemble figures

out a solution. When working on something simple, an

ensemble innovates and automates simple things in their

workflow. Where an individual tolerates wasteful practices,

an ensemble amplifies and addresses those.

Immediate Feedback

When we work alone, the best and the worst of us ends up

in the code or the work artifact we are creating. When

someone joins in later and reviews, they help correct some

of the stuff, making priority calls to not address things that

would have needed addressing. 

15

Image. Working Alone.

When we work alone, the delayed feedback allows us to

create structures that are hard to undo, and create

unwillingness to change when we realize they were not

optimal.

When we work as an ensemble, the best of each one of us

end up in the code or the work artifact we are creating. We

can correct mistakes when they are about to happen,

without egos in play. Often our best is better in a group than

16

our best alone individually, as group generates ideas that

would not emerge working alone.

Image. Working as an Ensemble.

Working in an ensemble can be particularly rewarding for

team members whose programming skill is less evolved.

They still have great ideas even if they have little ability to

turn it into production code alone and we would like the

best ideas to end up into the software we are building.

Learning or Contributing

For ensemble programming, we say the right size of a group

is one where everyone is still either learning or contributing.

Contributing raises the quality of the code or the work

17

artifact we are creating. Learning raises the quality of the

people contributing the code or the work artifacts. People,

having learned in an ensemble, are better off working on

similar activities solo.

Two people are a pair. Three and above are an ensemble.

Moving from a pair to a group changes the interpersonal

relationships, and we find that people who misbehave in a

pair are on better behavior in a group. More people

maximize the chance of serendipitous learning from the

other members in the group.

Ensemble programming is a software development method

- all code is produced in ensemble. When the team works,

they work together. Ensemble programming goes beyond a

time-boxed practice session. It's what ensemble

programming teams do, all day, every day.

Other teams use ensemble programming within a time-box.

They work solo or in pairs except for ensemble

programming sessions introduced to share knowledge

amongst team members.

Consultants and trainers have found ensemble

programming to be an effective way to teach groups of

people habits, hands-on skills, tools and techniques.

Facilitating an ensemble allows the facilitator to impact the

18

work as it is done instead of discussing an experience of

doing something in the abstract based on people's

perceptions.

Benefits of High Communication

When we are ensemble programming, we are all working on

the same thing together. If we need help - whether we know

to ask for it or not - it is available within the group

immediately within the work we are doing.

When we work, we often make mistakes. Maybe we

misunderstand a detail of what is required. Maybe we forgot

In company chat, a team member shares an image with

some overlaying text on a screenshot. Someone exclaims:

“Windows Snipping Tool!” as they had just few days

earlier learned of its existence as someone noticed them

struggling with taking screenshots. The screenshot

looked like it was handcrafted. “Greenshot!” exclaimed

another as sharing of tools started. Before finding the

tools evident to others, everyone had done screenshots

the hard way and had no idea there was different

individual ways to learn from.  

Years of missing out on ideas and tools are typical when

teams are not ensemble programming.

19

to think about an aspect that would be relevant. If we make

a mistake working solo and don't notice it ourself, we will

compound the mistake and build more on top of it until it

gets corrected. And if we have used significant time building

on top of that mistake, correcting it makes us defensive.

The just-in-time knowledge ensemble programming offers

changes the dynamic. The mistakes people would correct

get corrected in the moment, before the mistake reaches the

code or the work artifact. Learning is turned up by the fact

that you can learn things you know you don't know, but

ensemble programming guides you to learning things you

did not yet know you could be learning.

Cost of rework we can track. Cost of delays of knowledge is

mainly hidden. If the hours we waste because of gaps in

knowledge or understanding were accounted for, there

would be less resistance to ensemble programming.

20

CHAPTER 2

FACILITATORS GUIDE TO

ENSEMBLE PROGRAMMING

From first chapter, you have an idea of what ensemble

programming might look like and why ensembling can

make sense. This chapter gives guidance to people who take

upon themselves to facilitate ensembles.

Facilitator is the person who ensures we have something

you want to do together, the physical space, the right

people, and the necessary rules to have a good experience

mob programming.

Image. Large Group Ensemble Testing at Training in UK

21

Understanding the Facilitator’s Work

Not all ensembles, even beginner ensembles, have a

facilitator. Facilitator is usually needed when:

• The ensemble participants can use help in recognizing

patterns of interaction to grow to work better together

• The facilitator has a teaching agenda in relation to the

work the ensemble is doing

• Coming together to work benefits from support of one

individual focusing on improving the experience of

everyone

Introducing ensemble programming for your team, you

might want to step to side to facilitate, or introduce rules of

how to work and then participate fully in the ensemble.

As ensemble programming enthusiast, you may want to

create space for ensemble programming to continue or

move from being occasional experience to a way of working

all day. Getting to that place requires facilitation and

advocacy.

Coming into an organization as a consultant or a trainer,

you would want to use ensemble programming as a tool to

see what people do (as opposed to what they say they do)

22

and move them to better place through doing. Role of a

facilitator is the natural role for a trainer transferring

habits, skills, knowledge and tools to a group of people

where teaching can happen through people in the ensemble

discovering the best they can do as a group, or through

facilitator taking a navigator role when teaching with an

example is necessary.

Facilitating an ensemble does not require expertise in the

work the ensemble is doing. As long as the ensemble has

someone who knows how to do the work, the facilitator can

focus on everything but the content of the work.

Our advice for beginner facilitators is that you would

follow steps we outline. Some may appear counterintuitive,

or wrong. As soon as you build experiences as an ensemble

facilitator, you can build your own style on top of the basic

recipe. Share your beginning experiences and start

connecting with the mob programming community.

Intermediate facilitators start to have a sense of the

different parts and are able to move to their own, unique

direction. Think of our recipes as foundation and variation.

We may not recognize all the variation. Discuss your

variations in the ensemble programming community and

help build the approach forward.

23

Advanced facilitators don’t follow our recipes. They pay

attention to what is working, and do more of those things.

Their focus is on the subtle characteristics unique to their

teams and lessons from the retrospectives. At this point this

book has served its purpose, and may remind you of some

foundational elements. You’re ready to create your own way

of working together and share new variations to recipes

with the ensemble programming community.

An Overview to the Work

To have your first ensemble programming session

successfully run, you will need the following:

• Problem to Work On. You need to choose work to

complete that is simple yet interesting. First time

ensemble programmers are primarily learning to work

together and you want the problem to illustrate they need

the group while being simple enough to leave space for

learning about collaboration.

• Time and People. You need a common time, usually

60-120 minutes slotted on every participant’s schedule

for your first experience. While you can ensemble

remotely over the internet, separating people with time

breaks ensemble programming. You will not want to

force people to participate.

24

• Physical Space. Setting up a physical space for

ensemble programming has its own considerations.

There are considerations from visibility to the work

happening on the screen, to ensuring movement in the

room and using physical space to ensure everyone hears

one another.

• Rules and Working Agreement. You don’t need

many rules, but the ones you need are important. Roles,

rotation and working together are important.

• Recognizing Problems. First time ensemble can turn

chaotic, end up hijacked by individuals setting the mood

and benefit from some facilitation. Knowing what to

watch for is good.

• Retrospective. No experience is complete without

taking time to discuss it with the whole group. Make sure

you leave time for this and rewrite people's individual

experiences through the eyes of the others.

Problem to work on

There needs to be something to work on together. For your

first ensemble, keep the task clear and simple. Learning to

work together takes your focus. Tackle hard tasks as an

ensemble after you first learn to work together.

25

There are a few typical work tasks to begin with:

Simple work task

If your team has a simple work task to do, that is a good

candidate for ensemble programming. Be mindful about the

task really being simple. If your group isn’t good at

expressing intent in the form of tests and examples, a

normal work task turns hard in a group when the vision is

held inside one person’s head.

Refactoring large methods

Many teams have code that is hard to read and understand.

A refactoring for improved readability is a great task for

first ensemble programming session. Choose a method that

is troublesome that you would need to work on sometime

soon anyway.

We suggest you limit the refactoring in this session to

simple extraction of paragraphs to methods and giving

them names. If you only use rename and extract method

-refactoring, there is still plenty to do but the team gets to

focus on learning to work together.

26

Also, we suggest you frequently commit the changes. It

often reveals interesting dynamics around refactoring.

Usually you can commit after each extracted paragraph.

Programming Katas

Katas are simple exercises used to practice programming.

The common ones include FizzBuzz and Roman Numerals

(creating code, test first) and GildedRose (cleaning up

existing code).

Creating test automation

The code you work on can be test code. Adding tests to

existing test automation or cleaning it up with refactoring

are good options too.

Exploratory testing

Many times the best first task is a task of testing without

code. If you use ensemble testing mechanism, see what

problems your group is able to find in your own software or

any software you would work on as a practice.

Time and People

27

Finding two hours from people's schedules is sometimes

hard, and our recommendation is to pay attention to setting

up the expectations:

• This is optional not compulsory. We find that strongly

encouraging people to join who do not want to creates a

bad experience for everyone. Opting out in an option.

• When joining, stay for the whole duration including

retrospective. The first times new groups work together,

showing commitment through being there for whole

duration of the session is important.

Many mixes of people can work. A natural unit to work on is

a team that already works together.

The group size drives the time you should reserve. The time

allocated should fit minimum of 3 full rotations of everyone

in 4 minute timer. For a group of 8 people, we recommend

1,5 hours plus half an hour for retrospective.

Physical Space

Your basic setup is a meeting room that allows for people to

move for rotation and see the screen. Meeting rooms

allowing for movement are not always obvious, so try to

ensure the table is not fastened in a way that encourages

fixed seating. When we rotate, everyone should be able to
28

get up and move one notch in the rotation. If there is a

physical obstacle, we recommend finding a more open

room.

Image. Typical Ensemble Programming Setup

The screen, projector or TV should be visible to everyone in

the ensemble. It should be placed so that the person on the

keyboard and separate screen also naturally sees the shared

screen.

The chairs should be facing forward towards the screen as

much as possible. Rooms with furniture you can move

freely are better.

29

People will need to stand up and move around frequently,

so there should be room to do that comfortably. Having

your bags, notebooks and laptops with you isn’t helpful

during this. We advice asking people to place their stuff in

the corner of the room before starting to keep rotation

flowing. If people are uncomfortable with this, it is not a big

deal to hold on to their possessions.

A whiteboard where the navigators can express ideas is also

important. Place it on the other side of the screen than the

keyboard. It should be so that everyone can see it, but the

person standing next to it is not standing next to the driver.

This is important for speaking volume in the mob so that

everyone can follow.

Rules and Working Agreement

INTRODUCING ENSEMBLE PROGRAMMING

Many new ensembles start with introducing the group to

ensemble programming, roles and rules. Our experience

shows that before the first experience, this discussion is

premature and theoretical. We advice to leave time for

talking about the experience after the experience.

We suggest you introduce ensembling as a working and

learning together in a meeting room. As facilitator, you can

30

introduce the roles and rules as you are already working on

the tasks selected.

ROLES

Driver is the typist - intelligent input device. There should

be no decisions by the driver. For anything to happen, there

should be speaking out loud involved, initiating with other

members of the ensemble. While driver can speak back to

the navigators, it is important that they actively listen and

trust the group enough to do what they are asked to do.

Navigators are the people programming without touching

the keyboard. Designated Navigator stands next to the

whiteboard where we note the agreed task we are on. While

they take insight from the ensemble, they need to make

final decisions on what to do out of the options provided.

They should be talking about the task in the highest level of

abstraction possible. Usually in the beginning the highest

possible level drills down to keystrokes and simple

programming structures.

Navigators in the ensemble are expected to contribute

insights when appropriate in support of the designated

navigator.

31

Facilitator stands in the back and does not rotate with the

rest of the ensemble. If they need to step in, they will pause

the ensemble and assume whatever role needed except the

driver.

ROTATE ON TIMER

People should not be too comfortable in their seats and

roles. We suggest a new ensemble rotates on 4 minute

timer. In the first ensembles, the facilitators phone is the

least disruptive timer. The timer forces people in the

ensemble to pay attention.

At the end of each turn, everybody stands up and rotates to

the next seat. The navigator should become the driver. The

driver should join the ensemble.

In the very first ensemble, our advice is to not use a

specialized timer tool but rely on facilitators phone for

timed alerts on need to rotate.

There is also a selection of Mob Timer applications

available. Their general idea is to alert on who should be on

the keyboard and when it is time to switch. Some group find

early fondness for Timers and can’t imagine ensemble

programming without them.

32

When your ensemble programming flows, it does not

matter what gets you to switch places. At first you start off

with a four minute timer, and if your group finds four

minutes too short, our advice is to try a two minute timer to

enforce flow. Longer rotations up to 15 minutes should be

used only when an ensemble is established and used to

working together.

YES, AND …

When working as a ensemble, it is important to follow the

"Yes, and..." rule of improvisational theater. The idea here

is to continue with what you have. Do not to delete and

undo what the previous navigators did before you. You can

refactor but do not rewrite. You can do more, but not skip

what was going on when you rotated. This allows

continuously making progress and keeps people engaged in

the group.

If you follow this rule, then each step in the rotation moves

the ensemble further ahead than they were before.

It also helps calling out what the task was that the ensemble

is working on. When you’re adding to that, are you changing

the task completely?

BIAS TO ACTION

33

NO DECISIONS ON THE KEYBOARD

NAVIGATE ON HIGHEST LEVEL OF ABSTRACTION

KINDNESS, CONSIDERATION AND RESPECT

An important rule for ensemble programming is one of

kindness, consideration and respect. As a rule, it talks

about how we work with each other. It is also one of the the

more difficult rules and requires a little elaboration.

We will treat everyone with kindness, consideration and

respect.  

— Hunter Mob

This rule helps people discover a good way of working over

a long period of time, serving as a guiding principle for

which one’s own behaviors can be attached. Our aim is to be

our authentic selves in the ensemble and still treat each

other better and learn to work together well.

Kindness may appear self-explanatory, but is far from it.

Keeping challenging, even negative perspectives to oneself

can be nice but it isn’t kind. Being kind requires radical

candor, the idea that you both care personally and

challenge directly. Being kind means you will share your

perspectives even when they are in conflict with what others

34

expect to hear from you. Kindness is about constructive

feedback.

Consideration is about listening actively, hearing what

others mean to say over what they are saying,

understanding the meaning they are trying to convey.

Listening is particularly important when on the driver seat,

and to listen well, you must let go of your own idea of what

should happen and trust in the navigator. Listening to

everyone in the ensemble and making space for them to

contribute is necessary. As a facilitator, you may need to call

our missed contributions and remind people on the rule of

“no decisions at the keyboard” to enforce consideration.

Consideration means making space for everyone in the

ensemble to express themselves and bring forth ideas, and

often shows up as more senior people yielding to give space

for less seniors to grow through navigation. Consideration

also shows through trying other people’s ideas even when

we think they are not right.

Respect starts with believing that the work that happened

before ours and shows in the codebase we are dealing with

did the best job they could under the circumstances we may

not recognize. While criticizing a piece of code created by

someone not in the room may feel like a bonding exercise, it

is also a show of how we talk about code created by these

35

people when they are not around. Disrespect is corrosive.

We need to feel safe to experiment, safe to fail -

remembering that FAIL is a First Attempt in Learning. We

will not know everything, and come to the work in the

ensemble with our weaknesses and vulnerabilities, and

should be respected as our whole selves. Ensemble

programming exposes a lot about each individual in the

ensemble.

When we through experience gain trust on what we get

heard on, it changes how and what we speak on. As

Google’s project Aristotle finds, the most productive teams

have everyone contributing for existence of psychological

safety - the ability to trust that no matter what you say, you

will not be ridiculed.

• Speak honestly about the good and the bad, aim to turn

up the good

• Avoid decisions at the keyboard while driving

• Acknowledge other people's good ideas, listen to notice

them and when needed, amplify them assigning credit

• Seniors yield in navigation when they can

• With multiple ideas, try them all, the least likely first

36

• When in ensemble, focus on the work. Leave whenever

you need a break.

Recognizing Problems

As groups of people come together for ensemble

programming, many things can unfold. Spending time in

the same room, working on the same thing surfaces existing

conflicts, starts off by rubbing some people the wrong way

and requires significant effort to help overcome.

A good way of recognizing problems for a facilitator is to

paint a picture of what good looks like when ensemble

programming.

• Everyone contributes and learns.

• Everyone is treated with kindness, consideration and

respect.

• Ensemble follows the basic pattern of decisions

happening off the keyboard.

If the group is unable to work together on a problem but it

becomes one working others watching, you will want to try

reinforcing the basic rules:

• No decisions (thinking even) on the keyboard!

37

• Navigate on highest level of intent the driver can work

with and still do what the navigator intended.

• Designated navigator channels the rest of the group, and

rest of the group makes space for them to navigate.

We provide more suggestions on what might go wrong

when discussing Special Ensemble Programming Setups,

specifically ensembling in front of an audience.

Retrospective

At the end of your ensembling, sometimes also in the

middle, make sure to do a retrospective to collect and

discuss people's observations. Having everyone write their

observations on post-it notes allows for thinking time for

those who don’t think of their feet.

Make sure to leave enough time to talk about what people

learned in the ensemble, and how you could improve their

experience for the next time.

38

CHAPTER 3

CONTRIBUTING IN AN

ENSEMBLE

When figuring out how to work better in an ensemble, here

are some behaviors you could try practicing. This is inspired

by Willem Larsen's Mob Programming the Role Playing

Game and is best practiced by playing the game.

Contributions for a Driver

Here are some things for the Driver to do:

• Ask clarifying questions about what to type

• Ask to be navigated on a different level of abstraction

• Type something you disagree without

• Use a new keyboard shortcut

• Learn something about tooling

• Ignore a direct instruction from someone who isn't the

Designated Navigator

39

https://github.com/willemlarsen/mobprogrammingrpg
https://github.com/willemlarsen/mobprogrammingrpg
https://github.com/willemlarsen/mobprogrammingrpg

• Amplify the voice others did not hear from the Navigators

group

• Support contributions of a ensembler with least privilege

• Celebrate moments of excellence

• Point out a long line of code

• Point out unnecessary complexity

• Point out duplication

• Point out a misnamed variable or methods

• Propose an action to improve the code

• Point out a problem the ensemble is not seeing

Drivers take on three roles: from being a Driver (intelligent

input device) to Sponsor (supporting others from a unique

position) to Nose (noticing things about the code).

Contributions for a Navigator

Here are some things for the Designated Navigator to

do:

• Ask for ideas from everyone

40

• Filter the ensemble's ideas to tell the Driver exactly what

to type

• Tell the driver only your high-level intent and have them

implement the details while you review them

• Create a failing test, make it pass, refactor

• Find and share relevant information from documentation

• Find and share relevant information from a blog

• Find and share relevant information from a coding forum

• Point out a repeated task in a tool

• Point out a repeated aspect of the team process

• Point out possible unnecessary code

• Propose an automation for a repeated tasks

• Propose automating a repeated task

• Take more than one idea from the other people in the

ensemble and do both

• Get and implement an idea from someone in the

ensemble who has been quiet

• Make a bad suggestion and ask people for options

41

• Allow the choice of next action for the least privileged

voice

Navigators take on four roles: from being a Navigator

(translating ideas into code) to Researcher (having better

information available) to Automationist (recognizing

repetition) to Conductor (enhancing others contributions).

Here are some things Other Navigators can do:

• Make room for less privileged voice to be heard

• Contribute an idea

• Ask questions until you understand

• Listen actively ready to pitch in when needed

• Quietly speak into the navigators ear

• Give the smallest cue necessary to move navigator

forward through the problem

• Navigate the navigator on highest level of abstraction

they can successfully take through

• Record solution alternatives on a whiteboard so they are

not forgotten

42

• Step on whiteboard to express an idea as it is taking

shape

• Articulate insights of current task at hand to make them

visible for the ensemble

Other navigators can step in as Designated navigators any

time, and this list includes some ideas of what they might

try while not actively navigating the driver. Other

navigators take on three roles: from Ensembler (always

contributing in different ways) to Rear Admiral (helping

designated navigator do better and learn) to Archivist

(improving team visibility).

Contributions Have Dimensions

A lot of our experiences in contributing in a ensemble

programming come from the foundation of being a less

privileged voice when it comes to programming, and a

highly privileged voice when it comes to testing.

Our experiences as foundation guide us to appreciate

contributions come in many forms:

• Being the slow one in a ensemble made others more clear

and thoughtful in response. The somewhat random way

of doing whatever came to someone's mind that everyone

had hard time following turned into agreed steps.

43

• Knowing from the history why things may be the way

they are proved useful on several occasions.

Remembering what was already there and conceptually

similar turned code from technical debt to technical

assets that we could build on.

• Suggesting changes in browser we test in or test data we

use revealed problems at early stage of programming a

user interface component.

• Knowing customer priorities and past functionalities

helped us avoid mistakes that would require complete

rewrites.

• The group looking at the tester in the ensemble

remembering they are not satisfied with the level of

testing for a feature without a word being spoken.

We learned that we had great ideas we had not been able to

turn into code when working in separate workflows, that

when brought to an ensemble, could translate into changes

in the way we work that save a lot of time and effort.

We learned to appreciate that some contributions in an

ensemble are about being productive: doing a task,

contributing a relevant piece of information. Some

contributions are about being generative: having an impact

44

on how others do their tasks. Both contributions are

valuable.  

45

CHAPTER 4

LEARNING IN AN ENSEMBLE

46

CHAPTER 5

FROM TIME-BOXED TO

CONTINUOUS

When we start with ensemble programming, we usually

time-box it to take place in a meeting room for a limited

amount of time. When done with the ensemble

programming session, we ask when we should do it again.

If our ensemble programming sessions within the time-

boxed mode are heavily geared to everyone learning with

little impact on contributing more effectively, our

experience is that people can continue ensemble

programming for years in a time boxed mode. The sessions

alone change how people relate to one another outside

those sessions and can serve as a great productivity boost.

As the group of people sees the benefits of ensemble

programming to the ability to deliver, some groups opt in

beyond regular time-boxes, turning into ensemble

programming continuously. There are teams in the world

who have opted in to do all their production code in an

ensemble, which means they usually come to work same

47

time and leave same time, ensemble programming with

what ever combination of people is available at that time.

48

CHAPTER 6

SPECIAL ENSEMBLE

PROGRAMMING SETUPS

We’ve covered setting up first ensemble programming

sessions under regular conditions. A lot of times we find

that our organizational constraints may not allow us for the

basic 5-8 people in the same room all working together on

the same thing.

As a consultant and trainer, I show up in places where there

are too many people in relation to the time available for

everyone to be in an ensemble and still be learning or

contributing. Layering people into two groups - the

ensemble and the audience - is a helpful pattern to work

around that.

With the purpose of teaching for 1-3 days, ensemble

programming with a large ensemble has its own special

characteristics.

Working in global organizations, not all ensembles I would

want to facilitate can take place locally. Some organizations

are born distributed, and still can ensembles.  

49

Ensembling with an Audience

Ensemble programming with an audience is a special setup

that is useful tool especially to someone teaching ensemble

programming, teaching any skills in software development

in a hands-on style making new kinds of sessions available

for conferences, or generally running demo sessions with

partial session participant involvement.

As a conference speaker and a trainer, a lot of our ensemble

programming experience comes from facilitating ensemble

programming sessions with various groups. For a training,

we usually set up the whole group into an ensemble where

everyone rotates. For conference sessions where time

constraints limit participant numbers for effective

ensembling, we use ensembling with an audience.

THE SETUP

For ensembling with an audience, you split the room to two

groups:

• The Ensemble. For the most effective ensemble made

of complete strangers is small. You want to have a diverse

set of ensemble programmers. These are the people doing

the work.

50

• The Audience. The rest of the group sit in rows as

audience. The role of the audience is to watch and make

observations, and their participation is welcome when

doing a retrospective.

For the ensemble, you will set up a basic ensemble setup in

the front of the room with chairs for each person,

whiteboard furthest away from the computer to ensure

speaking volume for the designated navigator through the

physical setup.

Image. Ensemble Programming with an Audience

For this setup, you will need a room with chairs that are

freely moving. Make sure text on the screen is big enough

not only for the ensemble to see, but the audience to follow

as well.

51

TIPS FOR THE FACILITATOR

As we have run some hundreds of sessions with various

groups in this format, we have had things go wrong in many

ways.

Things you can do in advance to ensure less problems

• If the room is big, ask for a microphone for both the

driver and designated navigator. It is essential that

people in the room can hear their dialog. While there are

no decisions allowed on the driver seat, speaking back to

the navigators pointing out things you see and they don’t

is often necessary.

• If you have only one microphone, give that to the

designated navigator. Even in smaller rooms, the

microphone can work as a talking stick the designated

navigator passes around for other navigators and can

help create an atmosphere where everyone in the

ensemble gets to contribute.

• Make sure the text on the screen is visible from the back

row. Avoid dark theme, it does not serve you well for live

coding and testing in front of an audience.

• When selecting the diverse ensemble, what you need to

do for this depends on who you are. If you are a white
52

man facilitator and want women, start with inviting

women or facilitate ensemble member selection in a way

that gives you a diverse set of ensemble programmers. As

a white woman, women volunteer for me in ways they

don’t for the men and I need to work and I need to work

on other aspects of diversity.

• For a demo ensemble, you may want to demo a group

with experience working on the problem and even

together. If that is your aim, invite the people you want

for the ensemble in advance.

• A new ensemble with different experiences highlights

many powerful lessons around collaboration and people

helping each other and your goal to set up a fluent demo

is probably infrequent. The new programmers exclaiming

“they now know how to do TDD” as equal contributors is

a powerful teaching tool.

Things you can do while ensembling to improve the

experience

• Encourage people in the audience who want to be

navigating from the audience to join the ensemble. To be

more exact, demand that or holding their perspective that

can be very disruptive.

53

• If you want to introduce who is in the ensemble, you can

do that on first round of rotation. If you want deeper

introduction, you can have a different question to tell

about themselves on each round of rotation.

• When people rotate, ask them to tell what they continue

on. It helps to enforce the yes and -rule and is sometimes

necessary when nervous participants have been building

their private plan waiting for the hot seat.

• When driver is making their own decisions at the

keyboard, simply call that behavior out referring to the

rule: “No decisions at the keyboard.” or “Looks like

there’s decisions happening at the keyboard.” Calling it

out when you see it gets the group to a place to adapt.

• When group is stuck, ask questions. “Does it compile?”,

“What should you do next?”, “Did you run the tests?”,

“What are your options now?”. Your goal is not to do

things for them but get them to see what they could be

doing.

• Repeat ideas from more silent ensemble members.

Sometimes people only hear the designated navigator

and don’t pay attention to the other people and their

contribution. When this happens, stop the group and

54

make space for the more quiet people’s ideas. You can

amplify them by calling attention to them.

• When group is stuck in not knowing how to do a thing,

say “Let me step in to navigate” and model how to do a

thing for short timeframe. Expect the group to do that

themselves the next time.

• When a group gets stuck in planning, move them to

quickly listing options and introduce a rule: do the least

likely first, be open to do them all. A lot of times people

are happy with the option they would fight indefinitely

after it has been implemented. Doing things in many

ways over arguing about them moves the needle from

ideas to action.

• If someone in the ensemble starts taking up all the

navigation as they know what needs doing while others

are learning, enforce a stronger designated navigator

pattern to allow everyone space to turn their ideas to

words that get turned into action and code.

Things you can do in retrospective to save up a messy

session

• Facilitate a retrospective towards discussions around

reasons we could learn from for lack of progress

55

• Introduce theories or ideas of how you could try doing

things different the next time.

• Find your own style of facilitating groups of strangers.

Having seen multiple people facilitate, there are style

differences where one person’s approach would feel off

on another. Strong-handed “supporting progress” and

light-handed “enabling discovery” will result in sessions

that are different.

Training in an Ensemble

A special case of ensemble programming that has been very

beneficial for us is to deliver a training in a mob. Anything

you could teach in a class room format, you could also teach

as an experiential session where you lead people to learning

through doing and reflecting on doing.

Before ensemble programming, our experience was to teach

experiential contents through pairing and group work

where the facilitator set up the task, and the pair / group

was on their own on doing the task. Facilitator would again

bring the whole training together to learn across groups.

This format worked well, but missed out on one thing a

trainer could do: them seeing what exactly is going on, and

them teaching over just facilitating learning that happens.

56

Ensemble programming as a training tool for us has

provided many frames in which to work in:

• 1-3 day courses where problems we work on are designed

to teach a curriculum for a group of 12-25 people. This is

a drop-in model for a traditional training.

• Visiting coach model where training is time boxed for

each team, usually in two kinds of learning experiences:

working on your own production code or working on

designed teaching problems. This is a model for coaching

and teaching while coaching and replaces talking about

perceptions with doing things and building habits and

knowledge.

Remote Ensemble Programming

57

CHAPTER 7

RECOMMENDED PEOPLE AND

MATERIALS

For coaching using ensemble programming model, Emily

Bache does great work on structuring and popularizing

what she calls technical agile coaching. Her talk from Agile

Greece is available on YouTube: https://www.youtube.com/

watch?v=9tfGt5T0BfI

For working as a programmer in a full-time ensemble, I

look for inspiration from Åsa Liljegren. I recommend

reading her blog post about 4 years of constant mob

programming: https://reallyshouldblogthis.blogspot.com/

2019/07/4-years-of-constant-mob-programming.html

Ensemble Testing is a special case of ensemble

programming and has taken the testing communities as a

mechanism of learning. Reading what Maaret Pyhäjärvi

h a s t o s a y a b o u t i t i s w o r t h w h i l e : h t t p s : / /

www.ministryoftesting.com/dojo/lessons/mob-testing-an-

introduction-experience-report

For using ensemble programming as a tool to transform

organization from within, Lisi Hocke works with multiple
58

https://www.youtube.com/watch?v=9tfGt5T0BfI
https://www.youtube.com/watch?v=9tfGt5T0BfI
https://reallyshouldblogthis.blogspot.com/2019/07/4-years-of-constant-mob-programming.html
https://reallyshouldblogthis.blogspot.com/2019/07/4-years-of-constant-mob-programming.html
https://reallyshouldblogthis.blogspot.com/2019/07/4-years-of-constant-mob-programming.html
https://www.ministryoftesting.com/dojo/lessons/mob-testing-an-introduction-experience-report
https://www.ministryoftesting.com/dojo/lessons/mob-testing-an-introduction-experience-report
https://www.ministryoftesting.com/dojo/lessons/mob-testing-an-introduction-experience-report

teams starting them with ensemble programming and

learning with them. Lisi’s sessions are golden. Her blog is

f u l l o f e x p e r i e n c e s , s t a r t i n g w i t h : h t t p s : / /

www.lisihocke.com/2017/04/our-teams-first-mobbing-

session.html

A special integration of ensemble programming to a product

development I find inspiring is reported by Anssi Lehtelä.

He has spoken of their experience at Visma in conferences

and as a practitioner, appears on conferences fairly

irregularly.

Sal Freudenberg and Matt Wynne and the Cucumber Pro

team did remote ensemble programming. They discovered

that individual work did not give them what they could get

through ensemble programming over the internet together

and reported some of their findings here: https://

c u c u m b e r . i o / b l o g / i n c l u s i v e - b e n e f i t s - o f - m o b -

programming/

The “father of ensemble (mob) programming” Woody Zuill

continues to evangelize and teach the approach. He has

written a book on mob programming available on LeanPub:

https://leanpub.com/mobprogramming and I recommend

searching for one of his talks. Usually the latest has

condensed his insights best.

59

https://www.lisihocke.com/2017/04/our-teams-first-mobbing-session.html
https://www.lisihocke.com/2017/04/our-teams-first-mobbing-session.html
https://www.lisihocke.com/2017/04/our-teams-first-mobbing-session.html
https://cucumber.io/blog/inclusive-benefits-of-mob-programming/
https://cucumber.io/blog/inclusive-benefits-of-mob-programming/
https://cucumber.io/blog/inclusive-benefits-of-mob-programming/
https://leanpub.com/mobprogramming

The original Hunter Mob members continue advocating for

Ensemble Programming and I recommend checking out the

work from Christopher Lucian on scaling ensemble

programming at Hunter and bringing ensemble

programmers together through a podcast, Jason Kerney on

experiences of years of ensembling (https://

www.agilealliance.org/resources/experience-reports/mob-

programming-my-first-team/) and Aaron Griffith on his

work on ensemble programming for the introverted

(https://www.agilealliance.org/resources/experience-

reports/mob-programming-for-the-introverted/).

The ensemble programming community is large, and comes

together annually in Mob Programming Conference

organized by Agile New England in Boston. The best way to

find people and experiences is twitter hashtag:

#MobProgramming and #EnsembleProgramming

60

https://www.agilealliance.org/resources/experience-reports/mob-programming-my-first-team/
https://www.agilealliance.org/resources/experience-reports/mob-programming-my-first-team/
https://www.agilealliance.org/resources/experience-reports/mob-programming-my-first-team/
https://www.agilealliance.org/resources/experience-reports/mob-programming-for-the-introverted/
https://www.agilealliance.org/resources/experience-reports/mob-programming-for-the-introverted/
https://www.agilealliance.org/resources/experience-reports/mob-programming-for-the-introverted/

CHAPTER 8

MISCELLANEOUS THEMES

As our vision of this book is evolving and there's a need to

write pieces down, this is a place for these miscellaneous

themes.

Attribution for Work Done in a Ensemble

When we ensemble at work, the rights to the work belong

with our employer. When we create something of relevance

even if the rights belong somewhere, we want to know we

are remembered for our contributions.

Even before ensemble programming came along, we knew it

takes a village to build a software product. While we could

see our individual contributions in the changes we made

and types of changes we made, ensemble programming

makes that more fuzzy.

Just look at Git, a core tool for version control. We have

only recently been able to tag code contributions for

multiple authors and while it is technically possible, we

usually use someone’s account.

61

The attribution becomes more tangled with ensemble

programming. Like when baking a cake, we can list the

individual ingredients: sugar, flour, eggs, vanilla, butter.

But when we mix them up in just the right proportions, the

cake we get is better. We can say a missing ingredient

makes things worse, but we can't attribute good to one of

the ingredients. In an ensemble, people inspire one another,

and end up creating things together they would not create

alone.

Similarly, people in an ensemble change. A visitor in an

ensemble two years ago may deserve private credit for their

remaining impact, but would not be considered one of the

people an award of recognition for today's level of

excellence in software.

BEST IDEAS WIN WHEN YOU CARE ABOUT WORK

OVER CREDIT

We often advice people who work in ensembles to think of

the work in terms of collaborative crediting. When you care

about the work over credit, that is how you get the best

ideas to win.

When working individually, claiming credit happens by idea

and prototype. The finishing work rarely gets same level of

recognition. We thinking that crediting ideas is wrong, and
62

that turning ideas into running, working software should be

the target of attribution. Instead of ideas, implementing

those ideas in creative ways is where value is created.

Attributing a piece of software to the architect over the

developer implementing the reality of the vision would not

be the right approach.

In an ensemble, we seek a situation where everyone is either

learning or contributing. Learning is something that stays

with you when you leave the ensemble. Contribution is

something you share with people you ensemble with, that is

a product of its time where fair attribution and

remembering it realistically is important.

Fair attribution does not happen automatically.

THIS BOOK AS A CASE EXAMPLE

Learning eventually leading to this book was a paired work

at its time. As two authors could no longer collaborate on an

unfinished book, we learned we did not share a vision of

what collaborative crediting looks like.

The author of this Ensemble Programming Guidebook took

the learnings, but recreated the whole book as a single

author book after being kicked out from LeanPub for the

book she had written. With two authors and this books

63

author as the main author, a lot of the text was written by

her and checked in from the other authors computer,

marking commits in GitHub for the second author only.

With a version of two author book unfinished, this book is a

complete restart of the vision to create an Ensemble

Programming Guidebook.

There is a contribution from the collaborators in sharing

ideas, a little deeper than one you would have with a great

reviewer. Not caring for credit would mean that either one

can take the book forward as the original idea was. They felt

differently and the dispute will be discussed in court of law.

Regardless of the conclusion, the collaborator blocked this

book from being published on LeanPub.

Attribution for work done in an ensemble is to recognize

and appreciate the impact, without minimizing the work of

the others coming after.

PEOPLE CRAVE RECOGNITION

No matter what we do, we crave for recognition for our

contributions. Ensembling makes us worried that our

personal impact cannot be identified. Instead, we need to

collaboratively credit a group creating something together

that none would have created alone.

64

We seek recognition to a point where we make collaboration

difficult prioritizing credit.

A famous example talks about identifying types of dinosaurs

based on fossils. Researchers around the wold identified 12

types of dinosaurs, and everyone who identified one, got to

name their discovery. Later, a researcher asked a relevant

question: “Why are there no baby dinosaurs?”, only to

discover that 5 of the 12 identified types are actually

younger versions of same types. As crediting works,

identifying a new type was prioritized over grouping new

characteristics to an already identified type. Being the first

mattered. Being the one with the idea matters.

65

APPENDIX

Ensemble Programming Timers

Problems to Ensemble Program On

Test-Driven Development

FizzBuzz Kata. Create a program that outputs Fizz for

numbers divisive by 3, Buzz for numbers divisive by 5, and

FizzBuzz for numbers divisive by both 3 and 5.

Roman Numerals Kata. Create a program that turns

numbers into Roman numerals.

Legacy Code:

The Gilded Rose Kata by Emily Bache.  

https://github.com/emilybache/GildedRose-Refactoring-

Kata

The Tennis Kata by Emily Bache.  

https://github.com/emilybache/Tennis-Refactoring-Kata

66

https://github.com/emilybache/GildedRose-Refactoring-Kata
https://github.com/emilybache/GildedRose-Refactoring-Kata
https://github.com/emilybache/Tennis-Refactoring-Kata

